Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Cancer Epidemiol ; 84: 102364, 2023 06.
Article in English | MEDLINE | ID: covidwho-2315845

ABSTRACT

BACKGROUND: Previous studies have explored population-level smoking trends and the incidence of lung cancer, but none has jointly modeled them. This study modeled the relationship between smoking rate and incidence of lung cancer, by gender, in the U.S. adult population and estimated the lag time between changes in smoking trend and changes in incidence trends. METHODS: The annual total numbers of smokers, by gender, were obtained from the database of the National Health Interview Survey (NHIS) program of the Centers for Disease Control and Prevention (CDC) for the years 1976 through 2018. The population-level incidence data for lung and bronchus cancers, by gender and five-year age group, were obtained for the same years from the Surveillance, Epidemiology, and End Results (SEER) program database of the National Cancer Institute. A Bayesian joinpoint statistical model, assuming Poisson errors, was developed to explore the relationship between smoking and lung cancer incidence in the time trend. RESULTS: The model estimates and predicts the rate of change of incidence in the time trend, adjusting for expected smoking rate in the population, age, and gender. It shows that smoking trend is a strong predictor of incidence trend and predicts that rates will be roughly equal for males and females in the year 2023, then the incidence rate for females will exceed that of males. In addition, the model estimates the lag time between smoking and incidence to be 8.079 years. CONCLUSIONS: Because there is a three-year delay in reporting smoking related data and a four-year delay for incidence data, this model provides valuable predictions of smoking rate and associated lung cancer incidence before the data are available. By recognizing differing trends by gender, the model will inform gender specific aspects of public health policy related to tobacco use and its impact on lung cancer incidence.


Subject(s)
Cigarette Smoking , Lung Neoplasms , Adult , Male , Female , Humans , Cigarette Smoking/adverse effects , Cigarette Smoking/epidemiology , Bayes Theorem , SEER Program , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Incidence
2.
Semin Respir Crit Care Med ; 44(3): 317-326, 2023 06.
Article in English | MEDLINE | ID: covidwho-2293574

ABSTRACT

Lung diseases caused by workplace exposure are too often mis- or underdiagnosed due in part to nonexistent or inadequate health surveillance programs for workers. Many of these diseases are indistinguishable from those that occur in the general population and are not recognized as being caused at least in part by occupational exposures. More than 10% of all lung diseases are estimated to result from workplace exposures. This study reviews recent estimates of the burden of the most important occupational lung diseases using data published by United Nations specialized agencies as well as the Global Burden of Disease studies. We focus on occupational chronic respiratory disease of which chronic obstructive lung disease and asthma are the most significant. Among occupational cancers, lung cancer is the most common, and is associated with more than 10 important workplace carcinogens. Classic occupational interstitial lung diseases such as asbestosis, silicosis, and coal workers' pneumoconiosis still comprise a substantial burden of disease in modern industrial societies, while other occupational causes of pulmonary fibrosis and granulomatous inflammation are frequently misclassified as idiopathic. Occupational respiratory infections gained prominence during the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) pandemic, eclipsing influenza and tuberculosis and other less common workplace infectious agents. The most significant risks are workplace exposures to particulate matter, gases, and fumes as well as occupational carcinogens and asthmagens. We present data on the burden of disease measured by deaths attributable to occupational respiratory disease as well as disability-adjusted years of life lost. Where available, prevalence and incidence data are also presented. These diseases are unique in that they are theoretically 100% preventable if appropriate exposure controls and workplace medical surveillance are implemented. This remains a continuing challenge globally and requires steadfast commitment on the part of government, industry, organized labor, and the medical profession.


Subject(s)
COVID-19 , Lung Diseases, Interstitial , Lung Neoplasms , Occupational Diseases , Occupational Exposure , Humans , COVID-19/epidemiology , SARS-CoV-2 , Occupational Diseases/epidemiology , Occupational Diseases/etiology , Lung Diseases, Interstitial/epidemiology , Occupational Exposure/adverse effects , Lung Neoplasms/epidemiology , Lung Neoplasms/etiology , Carcinogens
3.
Int J Radiat Oncol Biol Phys ; 111(1): 233-239, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1209500

ABSTRACT

PURPOSE: The respiratory disease COVID-19 reached global pandemic status in 2020. Excessive inflammation is believed to result in the most severe symptoms and death from this disease. Because treatment options for patients with severe COVID-19 related pulmonary symptoms remain limited, whole-lung low-dose radiation therapy is being evaluated as an anti-inflammatory modality. However, there is concern about the long-term risks associated with low-dose pulmonary irradiation. To help quantify the benefit-risk balance of low-dose radiation therapy for COVID-19, we estimated radiation-induced lifetime risks of both lung cancer and heart disease (major coronary events) for patients of different sexes, treated at ages 50 to 85, with and without other relevant risk factors (cigarette smoking and baseline heart disease risk). METHODS AND MATERIALS: These estimates were generated by combining state-of-the-art radiation risk models for lung cancer and for heart disease together with background lung cancer and heart disease risks and age/sex-dependent survival probabilities for the U.S. RESULTS: Estimated absolute radiation-induced risks were generally higher for lung cancer compared with major coronary events. The highest estimated lifetime radiation-induced lung cancer risks were approximately 6% for female smokers treated between ages 50 and 60. The highest estimated radiation-induced heart disease risks were approximately 3% for males or females with high heart disease risk factors and treated between ages 50 and 60. CONCLUSIONS: The estimated summed lifetime risk of lung cancer and major coronary events reached up to 9% in patients with high baseline risk factors. Predicted lung cancer and heart disease risks were lowest in older nonsmoking patients and patients with few cardiac risk factors. These long-term risk estimates, along with consideration of possible acute reactions, should be useful in assessing the benefit-risk balance for low-dose radiation therapy to treat severe COVID-19 pulmonary symptoms, and suggest that background risk factors, particularly smoking, should be taken into account in such assessments.


Subject(s)
COVID-19/radiotherapy , Heart Diseases/etiology , Lung Neoplasms/etiology , Lung/radiation effects , Neoplasms, Radiation-Induced/etiology , Radiation Dosage , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Radiotherapy Dosage , Risk Factors
5.
Ann Thorac Surg ; 112(1): 248-254, 2021 07.
Article in English | MEDLINE | ID: covidwho-871748

ABSTRACT

BACKGROUND: The novel coronavirus (COVID-19) pandemic has led surgical societies to recommend delaying diagnosis and treatment of suspected lung cancer for lesions less than 2 cm. Delaying diagnosis can lead to disease progression, but the impact of this delay on mortality is unknown. The COVID-19 infection rate at which immediate operative risk exceeds benefit is unknown. We sought to model immediate versus delayed surgical resection in a suspicious lung nodule less than 2 cm. METHODS: A decision analysis model was developed, and sensitivity analyses performed. The base case was a 65-year-old male smoker with chronic obstructive pulmonary disease presenting for surgical biopsy of a 1.5 to 2 cm lung nodule highly suspicious for cancer during the COVID-19 pandemic. We compared immediate surgical resection to delayed resection after 3 months. The likelihood of key outcomes was derived from the literature where available. The outcome was 5-year overall survival. RESULTS: Immediate surgical resection resulted in a similar but slightly higher 5-year overall survival when compared with delayed resection (0.77 versus 0.74) owing to the risk of disease progression. However, if the probability of acquired COVID-19 infection is greater than 13%, delayed resection is favorable (0.74 vs 0.73). CONCLUSIONS: Immediate surgical biopsy of lung nodules suspicious for cancer in hospitals with low COVID-19 prevalence likely results in improved 5-year survival. However, as the risk of perioperative COVID-19 infection increases above 13%, a delayed approach has similar or improved survival. This balance should be frequently reexamined at each health care facility throughout the curve of the pandemic.


Subject(s)
COVID-19 , Carcinoma, Non-Small-Cell Lung/surgery , Delayed Diagnosis/mortality , Lung Neoplasms/surgery , Pandemics , SARS-CoV-2 , Aged , Biopsy , COVID-19/epidemiology , COVID-19/mortality , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/mortality , Carcinoma, Non-Small-Cell Lung/pathology , Computer Simulation , Decision Support Techniques , Delayed Diagnosis/adverse effects , Disease Progression , Humans , Lung Neoplasms/etiology , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Male , Pulmonary Disease, Chronic Obstructive/etiology , Risk , Smoking/adverse effects , Time Factors
6.
Med Hypotheses ; 143: 110074, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-625625

ABSTRACT

The morbidity and mortality of lung cancer are increasing. The Corona Virus Disease 2019 (COVID-19) is caused by novel coronavirus 2019-nCoV-2, leading to subsequent pulmonary interstitial fibrosis with chronic inflammatory changes, e.g., inflammatory factors repeatedly continuously stimulating and attacking the alveolar epithelial cells. Meanwhile, 2019-nCoV-2 can activate PI3K/Akt and ERK signaling pathways, which can play the double roles as both anti-inflammatory and carcinogenic factors. Moreover, hypoxemia may be developed, resulting in the up-regulation of HIF-1 α expression, which can be involved in the occurrence, angiogenesis, invasion and metastasis of lung cancer. Additionally, the immune system in 2019-nCoV-2 infected cases can be suppressed to cause tumor immune evasion. Therefore, we speculate that COVID-19 may be a risk factor of secondary lung cancer.


Subject(s)
Betacoronavirus , Coronavirus Infections/complications , Lung Injury/complications , Lung Neoplasms/etiology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Host Microbial Interactions , Humans , Hypoxia/complications , Models, Biological , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pulmonary Fibrosis/etiology , Risk Factors , SARS-CoV-2 , Signal Transduction , Tumor Escape
SELECTION OF CITATIONS
SEARCH DETAIL